"모델을 통째로 다시 학습하지 않고, 중간에 작은 모듈만 추가해 학습한다!"Adapters는 PEFT(파라미터 효율적 파인튜닝) 기법 중 가장 범용적으로 쓰이는 방법입니다. Adapters란?Adapter는 Transformer 블록 사이에 작은 Bottleneck 네트워크를 추가하고이 부분만 학습하는 기법입니다.원본 모델의 weight는 전부 freeze하고,추가된 Adapter layer만 학습하기 때문에 파라미터 수를 크게 줄이면서도기존 모델의 일반화 성능을 유지할 수 있습니다.왜 필요한가?대형 모델은 Full Fine-Tuning 시 GPU 메모리, 학습 시간 부담이 매우 큼LoRA, Prompt-Tuning은 주로 Attention projection 계층이나 입력 쪽만 바꿈Adapter는 모델..