본문 바로가기
반응형
반응형

머신러닝14

반응형
[머신러닝] 로지스틱 회귀(Logistic regression) *제가 이해한 내용을 정리한것이므로, 틀린내용이 있을 수 있으니 틀린점은 지적해주시면 감사하겠습니다. 로지스틱 회귀는 '회귀' 라고는 하지만 선형 이진 분류에서 뛰어난 성능을 내는 알고리즘이다. 보통 이진분류에만 사용하지만, 다중분류에도 사용할 수 있다.(복잡해서 쓰지 않는다고함) 퍼셉트론의 가장 큰 단점은 클래스가 선형으로 구분되지 않을 때 사용할 수 없다는 점이였다. 로지스틱 회귀는 비선형 분류모델에 적용할 수 있다. 설명하기전에 일단 오즈비(odds ratio)를 알아보자. "특정 이벤트가 발생할 확률"을 뜻한다. 동전 던지기의 확률이 1/2 일 때 앞면이 나올 확률 대비 뒷면이 나올 확률의 비율(오즈비)는 1 오즈비에 자연로그를 취한 값(p / (1 - p) 에 로그를 씌운것)을 로짓 함수라고 부.. 2020. 10. 28.
[머신러닝] 퍼셉트론과 아달린 (feat. 경사하강법) * 제가 이해한 내용을 적어 틀린 내용이 있을 수 있으니 지적 해주세요!! 퍼셉트론(Perceptron) 이란? - 인간의 뉴런 구조를 따라한 학습모델 1이라는 편향 값을 가진 퍼셉트론 이다. 입력값(x)과 가중치(w) 서로 곱하고 더한값이 weighted sum이다 결정 함수(여기선 계단함수)는 임계값(𝜃)을 기준으로 그 이상일 때 클래스1로, 아 닐 때 클래스 -1로 예측한다. 퍼셉트론을 순서대로 설명하자면 1. 가중치를 초기화 하고 학습률을 정해준다. 2. weighted sum을 진행한다. 3. 계단함수에서 일정 임계값을 기준으로 0과 1 클래스를 예측한다 4. 만약 예측할 값이 0이였는데 1을 예측했다면 x값에 비례한 가중치를 업데이트 한다. 5. 위 내용 2번부터 반복 그리고 퍼셉트론은 두 클.. 2020. 10. 28.
반응형